1. Abadi, M., Barham, P., Chen, J., et al: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)
2. Altschuler, J.M., Chewi, S.: Faster high-accuracy log-concave sampling via algorithmic warm starts. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, pp. 2169–2176 (2023)
3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows: in Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2005)
4. Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov Chain Monte Carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3), 269–342 (2010)
5. Aneja, J., Schwing, A., Kautz, J., et al.: A contrastive learning approach for training Variational Autoencoder priors. Adv. Neural. Inf. Process. Syst. 34, 480–493 (2021)