Probabilistic time series forecasts with autoregressive transformation models

Author:

Rügamer David,Baumann Philipp F. M.,Kneib Thomas,Hothorn Torsten

Abstract

AbstractProbabilistic forecasting of time series is an important matter in many applications and research fields. In order to draw conclusions from a probabilistic forecast, we must ensure that the model class used to approximate the true forecasting distribution is expressive enough. Yet, characteristics of the model itself, such as its uncertainty or its feature-outcome relationship are not of lesser importance. This paper proposes Autoregressive Transformation Models (ATMs), a model class inspired by various research directions to unite expressive distributional forecasts using a semi-parametric distribution assumption with an interpretable model specification. We demonstrate the properties of ATMs both theoretically and through empirical evaluation on several simulated and real-world forecasting datasets.

Funder

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference49 articles.

1. Athanasopoulos, G., Hyndman, R.J., Song, H., et al.: The tourism forecasting competition. Int. J. Forecast. 27(3), 822–844 (2011)

2. Baumann, P.F.M., Hothorn, T., Rügamer, D.: Deep Conditional Transformation Models. In: Machine Learning and Knowledge Discovery in Databases, pp. 3–18. Research Track. Springer International Publishing, Cham (2021)

3. Bengio, Y., Bengio, S.: Modeling high-dimensional discrete data with multi-layer neural networks. MIT Press, NIPS’99, p 400-406 (1999)

4. Bernstein, S.: Démonstration du théorème de weierstrass fondée sur le calcul des probabilités. Commun. Kharkov Math. Soc. 13(1), 1–2 (1912)

5. Bishop, C.M.: Mixture density networks (1994)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of predictive uncertainty estimation with machine learning;Artificial Intelligence Review;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3