A two-stage approach for Bayesian joint models: reducing complexity while maintaining accuracy

Author:

Alvares Danilo,Leiva-Yamaguchi Valeria

Abstract

AbstractSeveral joint models for longitudinal and survival data have been proposed in recent years. In particular, many authors have preferred to employ the Bayesian approach to model more complex structures, make dynamic predictions, or use model averaging. However, Markov chain Monte Carlo methods are computationally very demanding and may suffer convergence problems, especially for complex models with random effects, which is the case for most joint models. These issues can be overcome by estimating the parameters of each submodel separately, leading to a natural reduction in the complexity of the joint modelling, but often producing biased estimates. Hence, we propose a novel two-stage approach that uses the estimations from the longitudinal submodel to specify an informative prior distribution for the random effects when estimating them within the survival submodel. In addition, as a bias correction mechanism, we incorporate the longitudinal likelihood function in the second stage, where its fixed effects are set according to the estimation using only the longitudinal submodel. Based on simulation studies and real applications, we empirically compare our proposal with joint specification and standard two-stage approaches considering different types of longitudinal responses (continuous, count and binary) that share information with a Weibull proportional hazard model. The results show that our estimator is more accurate than its two-stage competitor and as good as jointly estimating all parameters. Moreover, the novel two-stage approach significantly reduces the computational time compared to the joint specification.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3