1. Abou-Moustafa, K.T., Ferrie, F.P.: A note on metric properties for some divergence measures: The gaussian case. In: Asian Conference on Machine Learning, pp 1–15(2012)
2. Aftab, W., Mihaylova, L.: A learning gaussian process approach for maneuvering target tracking and smoothing. IEEE Trans. Aerosp. Electron. Syst. 57(1), 278–292 (2021). https://doi.org/10.1109/TAES.2020.3021220
3. Alaoui, A., Mahoney, M.W.: Fast randomized kernel ridge regression with statistical guarantees. In: Advances in Neural Information Processing Systems, pp 775–783 (2015)
4. Anthony, M., Bartlett, P.L.: Neural network learning: theoretical foundations. cambridge university press (2009)
5. Atchade, Y.F., Fort, G., Moulines, E.: On stochastic proximal gradient algorithms. 23 (2014)