Multiscale stick-breaking mixture models

Author:

Stefanucci MarcoORCID,Canale Antonio

Abstract

AbstractBayesian nonparametric density estimation is dominated by single-scale methods, typically exploiting mixture model specifications, exception made for Pólya trees prior and allied approaches. In this paper we focus on developing a novel family of multiscale stick-breaking mixture models that inherits some of the advantages of both single-scale nonparametric mixtures and Pólya trees. Our proposal is based on a mixture specification exploiting an infinitely deep binary tree of random weights that grows according to a multiscale generalization of a large class of stick-breaking processes; this multiscale stick-breaking is paired with specific stochastic processes generating sequences of parameters that induce stochastically ordered kernel functions. Properties of this family of multiscale stick-breaking mixtures are described. Focusing on a Gaussian specification, a Markov Chain Monte Carlo algorithm for posterior computation is introduced. The performance of the method is illustrated analyzing both synthetic and real datasets consistently showing competitive results both in scenarios favoring single-scale and multiscale methods. The results suggest that the method is well suited to estimate densities with varying degree of smoothness and local features.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference35 articles.

1. Balogh, M.L., Baldry, I.K., Nichol, R., Miller, C., Bower, R., Glazebrook, K.: The bimodal galaxy color distribution: dependence on luminosity and environment. Astrophys. J. Lett. 615(2), L101 (2004)

2. Canale, A., Corradin, R., Nipoti, B.: Galaxy color distribution estimation via dependent nonparametric mixtures. In: Proceedings of 2019 Conference of the Italian Statistical Society (2019)

3. Canale, A., Dunson, D.B.: Bayesian kernel mixtures for counts. Journal of the American Statistical Association 106(496), 1528–1539 (2011)

4. Canale, A., Dunson, D.B.: Multiscale Bernstein polynomials for densities. Statistica Sinica 26, 1 (2016)

5. Canale, A., Prünster, I.: Robustifying Bayesian nonparametric mixtures for count data. Biometrics 73(1), 174–184 (2017)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3