1. Ahipaşaoğlu, S., Sun, P., Todd, M.: Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optim. Mehods Softw. 23, 5–19 (2008)
2. Atwood, C.: Sequences converging to $${D}$$-optimal designs of experiments. Ann. Stat. 1(2), 342–352 (1973)
3. Bach, F., Lacoste-Julien, S., Obozinski, G.: On the equivalence between herding and conditional gradient algorithms. In Proc. 29th Annual International Conference on Machine Learning, pp. 1355–1362 (2012)
4. Briol, F.-X., Oates, C., Girolami, M., Osborne, M.: Frank–Wolfe Bayesian quadrature: probabilistic integration with theoretical guarantees. Adv. Neural Inform. Process. Syst. 28, pp. 1162–1170 (2015)
5. Briol, F.-X., Oates, C., Girolami, M., Osborne, M., Sejdinovic, D.: Probabilistic integration: a role in statistical computation? Stat. Sci. 34(1), 1–22 (2019)