Variational Tobit Gaussian Process Regression

Author:

Basson Marno,Louw Tobias M.ORCID,Smith Theresa R.ORCID

Abstract

AbstractWe propose a variational inference-based framework for training a Gaussian process regression model subject to censored observational data. Data censoring is a typical problem encountered during the data gathering procedure and requires specialized techniques to perform inference since the resulting probabilistic models are typically analytically intractable. In this article we exploit the variational sparse Gaussian process inducing variable framework and local variational methods to compute an analytically tractable lower bound on the true log marginal likelihood of the probabilistic model which can be used to perform Bayesian model training and inference. We demonstrate the proposed framework on synthetically-produced, noise-corrupted observational data, as well as on a real-world data set, subject to artificial censoring. The resulting predictions are comparable to existing methods to account for data censoring, but provides a significant reduction in computational cost.

Funder

School of Data Science and Computational Thinking, Stellenbosch University

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference53 articles.

1. Alaa, A.M., van der Schaar, M.: Deep multi-task Gaussian processes for survival analysis with competing risks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 2326–2334 (2017)

2. Allik, B., Miller, C., Piovoso, M.J., et al.: The Tobit Kalman filter: an estimator for censored measurements. IEEE Trans. Control Syst. Technol. 24(1), 365–371 (2016). https://doi.org/10.1109/TCST.2015.2432155

3. Amemiya, T.: Tobit models: a survey. J. Econom. 24(1), 3–61 (1984). https://doi.org/10.1016/0304-4076(84)90074-5

4. Barrett, J.E., Coolen, A.C.C.: Covariate dimension reduction for survival data via the Gaussian process latent variable model. Stat. Med. 35(8), 1340–1353 (2016). https://doi.org/10.1002/sim.6784

5. Bishop, C.M.: Pattern Recognition and Machine Learning, Information science and statistics. Springer, New York (2009)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3