1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Zheng, X.: TensorFlow: large-scale machine learning on Heterogeneous Systems. TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org https://www.tensorflow.org/
2. Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B., Caruana, R., Hinton, G.E.: Neural additive models: interpretable machine learning with neural nets. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.), vol. 34, pp. 4699–4711. Curran Associates, Inc. Accessed from https://proceedings.neurips.cc/paper/2021/file/251bd0442dfcc53b5a761e050f8022b8-Paper.pdf
3. Alvarez-Melis, D., Jaakkola, T.S. On the robustness of interpretability methods (2018) . arXiv preprint arXiv:1806.08049
4. Bellman, R.E.: Adaptive Control Processes. Princeton University Press (1961). https://doi.org/10.1515/9781400874668
5. Bhatia, S., Kush, N., Djamaludin, C., Akande, J., Foo, E.: Practical modbus flooding attack and detection. In: Proceedings of the Twelfth Australasian Information Security Conference, vol. 149, pp. 57–65. AUS: Australian Computer Society, Inc. (2014)