Author:
Poot Anne,Kerfriden Pierre,Rocha Iuri,van der Meer Frans
Abstract
AbstractIn this work, the uncertainty associated with the finite element discretization error is modeled following the Bayesian paradigm. First, a continuous formulation is derived, where a Gaussian process prior over the solution space is updated based on observations from a finite element discretization. To avoid the computation of intractable integrals, a second, finer, discretization is introduced that is assumed sufficiently dense to represent the true solution field. A prior distribution is assumed over the fine discretization, which is then updated based on observations from the coarse discretization. This yields a posterior distribution with a mean that serves as an estimate of the solution, and a covariance that models the uncertainty associated with this estimate. Two particular choices of prior are investigated: a prior defined implicitly by assigning a white noise distribution to the right-hand side term, and a prior whose covariance function is equal to the Green’s function of the partial differential equation. The former yields a posterior distribution with a mean close to the reference solution, but a covariance that contains little information regarding the finite element discretization error. The latter, on the other hand, yields posterior distribution with a mean equal to the coarse finite element solution, and a covariance with a close connection to the discretization error. For both choices of prior a contradiction arises, since the discretization error depends on the right-hand side term, but the posterior covariance does not. We demonstrate how, by rescaling the eigenvalues of the posterior covariance, this independence can be avoided.
Publisher
Springer Science and Business Media LLC