Abstract
AbstractWe introduce the use of the Zig-Zag sampler to the problem of sampling conditional diffusion processes (diffusion bridges). The Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov process. Similar to the Lévy–Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated Faber–Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of the fully local algorithm for the Zig-Zag sampler that allows to exploit the sparsity structure implied by the dependency graph of the coefficients and by the subsampling technique to reduce the complexity of the algorithm. We illustrate the performance of the proposed methods in a number of examples.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Reference33 articles.
1. Andrieu, C., Livingstone, S.: Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario (2019). arXiv:1906.06197
2. Andrieu, C. et al.: Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo. (2018). arXiv:1808.08592
3. Beskos, A., Papaspiliopoulos, O., Roberts, G.O. et al.: Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6), pp. 1077–1098 (2006)
4. Betancourt M. : A Conceptual Introduction to Hamiltonian Monte Carlo (2018). arXiv:1701.02434
5. Bierkens, J., Fearnhead, P., Roberts, G.: The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data. Ann. Stat. 47(3) , pp. 1288–1320 (2019). https://doi.org/10.1214/18-AOS1715
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献