A piecewise deterministic Monte Carlo method for diffusion bridges

Author:

Bierkens JorisORCID,Grazzi SebastianoORCID,van der Meulen FrankORCID,Schauer MoritzORCID

Abstract

AbstractWe introduce the use of the Zig-Zag sampler to the problem of sampling conditional diffusion processes (diffusion bridges). The Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov process. Similar to the Lévy–Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated Faber–Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of the fully local algorithm for the Zig-Zag sampler that allows to exploit the sparsity structure implied by the dependency graph of the coefficients and by the subsampling technique to reduce the complexity of the algorithm. We illustrate the performance of the proposed methods in a number of examples.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Reference33 articles.

1. Andrieu, C., Livingstone, S.: Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario (2019). arXiv:1906.06197

2. Andrieu, C. et al.: Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo. (2018). arXiv:1808.08592

3. Beskos, A., Papaspiliopoulos, O., Roberts, G.O. et al.: Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6), pp. 1077–1098 (2006)

4. Betancourt M. : A Conceptual Introduction to Hamiltonian Monte Carlo (2018). arXiv:1701.02434

5. Bierkens, J., Fearnhead, P., Roberts, G.: The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data. Ann. Stat. 47(3) , pp. 1288–1320 (2019). https://doi.org/10.1214/18-AOS1715

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient method to simulate diffusion bridges;Statistics and Computing;2024-06-12

2. Seismic Response Probabilistic Evaluation of Bridge Pier After Vehicle Collision;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-05-04

3. Speed up Zig-Zag;The Annals of Applied Probability;2023-12-01

4. Exponential ergodicity for damping Hamiltonian dynamics with state-dependent and non-local collisions;Bernoulli;2023-08-01

5. Concave-Convex PDMP-based Sampling;Journal of Computational and Graphical Statistics;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3