Efficient importance sampling for large sums of independent and identically distributed random variables

Author:

Ben Rached NadhirORCID,Haji-Ali Abdul-Lateef,Rubino Gerardo,Tempone Raúl

Abstract

AbstractWe discuss estimating the probability that the sum of nonnegative independent and identically distributed random variables falls below a given threshold, i.e., $$\mathbb {P}(\sum _{i=1}^{N}{X_i} \le \gamma )$$ P ( i = 1 N X i γ ) , via importance sampling (IS). We are particularly interested in the rare event regime when N is large and/or $$\gamma $$ γ is small. The exponential twisting is a popular technique for similar problems that, in most cases, compares favorably to other estimators. However, it has some limitations: (i) It assumes the knowledge of the moment-generating function of $$X_i$$ X i and (ii) sampling under the new IS PDF is not straightforward and might be expensive. The aim of this work is to propose an alternative IS PDF that approximately yields, for certain classes of distributions and in the rare event regime, at least the same performance as the exponential twisting technique and, at the same time, does not introduce serious limitations. The first class includes distributions whose probability density functions (PDFs) are asymptotically equivalent, as $$x \rightarrow 0$$ x 0 , to $$bx^{p}$$ b x p , for $$p>-1$$ p > - 1 and $$b>0$$ b > 0 . For this class of distributions, the Gamma IS PDF with appropriately chosen parameters retrieves approximately, in the rare event regime corresponding to small values of $$\gamma $$ γ and/or large values of N, the same performance of the estimator based on the use of the exponential twisting technique. In the second class, we consider the Log-normal setting, whose PDF at zero vanishes faster than any polynomial, and we show numerically that a Gamma IS PDF with optimized parameters clearly outperforms the exponential twisting IS PDF. Numerical experiments validate the efficiency of the proposed estimator in delivering a highly accurate estimate in the regime of large N and/or small $$\gamma $$ γ .

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3