1. Álvarez, M., Luengo, D., Titsias, M., Lawrence, N.D.: Efficient multioutput Gaussian processes through variational inducing kernels. In: Teh, Y.W., Titterington, M. (eds) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR, Chia Laguna Resort, Sardinia, Italy, Proceedings of Machine Learning Research, vol. 9, pp. 25–32 (2010)
2. Banterle, M., Grazian, C., Lee, A., Robert, C.P.: Accelerating Metropolis–Hastings algorithms by delayed acceptance. Found. Data Sci. 1(2), 103–128 (2019)
3. Bastos, L.S., O’Hagan, A.: Diagnostics for Gaussian process emulators. Technometrics 51(4), 425–438 (2009)
4. Betancourt M (2015) The fundamental incompatibility of scalable Hamiltonian Monte Carlo and Naive data subsampling. In: Bach F, Blei D (eds) Proceedings of the 32nd International Conference on Machine Learning, PMLR, Lille, France, Proceedings of Machine Learning Research, vol. 37, pp 533–540
5. Bliznyuk, N., Ruppert, D., Shoemaker, C., Regis, R., Wild, S., Mugunthan, P.: Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation. J. Comput. Graph. Stat. 17, 270–294 (2008)