1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
2. Albughdadi, M., Chaâri, L., Tourneret, J., Forbes, F., Ciuciu, P.: A Bayesian non-parametric hidden Markov random model for hemodynamic brain parcellation. Signal Process. 135, 132–146 (2017)
3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
4. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2007). http://dl.acm.org/citation.cfm?id=1283383.1283494
5. Beal, M., Ghahramani, Z.: The variational Bayesian EM Algorithm for incomplete data: with application to scoring graphical model structures. In: Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Statistics, pp. 453–464. Oxford University Press, Oxford (2003)