1. Andersen, P.K., Borgan, Ø., Gill, R.D., Keiding, N.: Statistical models based on counting processes. Springer Series in Statistics. Springer, New York (1993)
2. Anderson, D., Kurtz, T.: Continuous time markov chain models for chemical reaction networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.) Design and analysis of biomolecular circuits, pp. 3–42. Springer, New York (2011). doi: 10.1007/978-1-4419-6766-41
3. Berlinet, A., Thomas-Agnan, C.: Reproducing kernel Hilbert spaces in probability and statistics. Kluwer Academic Publishers, Boston (2004)
4. Bishop, C.M.: Pattern recognition and machine learning (information science and statistics). Springer, Secaucus (2006)
5. Bowsher, C.G.: Stochastic kinetic models: dynamic independence, modularity and graphs. Ann. Stat. 38(4), 2242–2281 (2010)