High-plex spatial transcriptomic profiling reveals distinct immune components and the HLA class I/DNMT3A/CD8 modulatory axis in mismatch repair-deficient endometrial cancer

Author:

Guo Jingjing,Tang Baijie,Fu Jing,Zhu Xuan,Xie Wenlong,Wang Nan,Ding Zhiyong,Song Zhentao,Yang Yue,Xu Gang,Xiao Xue

Abstract

Abstract Purpose Tumors bearing mismatch repair deficiency (MMRd) are characterized by a high load of neoantigens and are believed to trigger immunogenic reactions upon immune checkpoint blockade treatment such as anti-PD-1/PD-L1 therapy. However, the mechanisms are still ill-defined, as multiple cancers with MMRd exhibit variable responses to immune checkpoint inhibitors (ICIs). In endometrial cancer (EC), a distinct tumor microenvironment (TME) exists that may correspond to treatment-related efficacies. We aimed to characterize EC patients with aberrant MMR pathways to identify molecular subtypes predisposed to respond to ICI therapies. Methods We applied digital spatial profiling, a high-plex spatial transcriptomic approach covering over 1,800 genes, to obtain a highly resolved TME landscape in 45 MMRd-EC patients. We cross-validated multiple biomarkers identified using immunohistochemistry and multiplexed immunofluorescence using in-study and independent cohorts totaling 123 MMRd-EC patients and validated our findings using external TCGA data from microsatellite instability endometrial cancer (MSI-EC) patients. Results High-plex spatial profiling identified a 14-gene signature in the MMRd tumor-enriched regions stratifying tumors into “hot”, “intermediate” and “cold” groups according to their distinct immune profiles, a finding highly consistent with the corresponding CD8 + T-cell infiltration status. Our validation studies further corroborated an existing coregulatory network involving HLA class I and DNMT3A potentially bridged through dynamic crosstalk incorporating CCL5. Conclusion Our study confirmed the heterogeneous TME status within MMRd-ECs and showed that these ECs can be stratified based on potential biomarkers such as HLA class I, DNMT3A and CD8 in pathological settings for improved ICI therapeutic efficacy in this subset of patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3