An adaptive finite element method for Riesz fractional partial integro-differential equations

Author:

Adel E.,El-Kalla I. L.,Elsaid A.,Sameeh M.ORCID

Abstract

AbstractThe Riesz fractional derivative has been employed to describe the spatial derivative in a variety of mathematical models. In this work, the accuracy of the finite element method (FEM) approximations to Riesz fractional derivative was enhanced by using adaptive refinement. This was accomplished by deducing the Riesz derivatives of the FEM bases to work on non-uniform meshes. We utilized these derivatives to recover the gradient in a space fractional partial integro-differential equation in the Riesz sense. The recovered gradient was used as an a posteriori error estimator to control the adaptive refinement scheme. The stability and the error estimate for the proposed scheme are introduced. The results of some numerical examples that we carried out illustrate the improvement in the performance of the adaptive technique.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Information Systems,Numerical Analysis,Signal Processing,Statistics and Probability,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3