On the identification of finite non-group semigroups of a given order

Author:

Monsef M.,Doostie H.

Abstract

AbstractIdentifying finite non-group semigroups for every positive integer is significant because of many applications of such semigroups are functional in various branches of sciences such as computer science, mathematics and finite machines. The finite non-commutative monoids as a type of such semigroups were identified in 2014, for every positive integer. We here attempt to identify the finite commutative monoids and finite commutative non-monoids of a given integer $$n=p^\alpha q^\beta$$n=pαqβ, for every integers $$\alpha , \beta \ge 2$$α,β2 and different primes p and q. In order to recognize the commutative monoids, we present a class of 2-generated monoids of a given order, and for the commutative non-monoids of order $$n=p^\alpha q^\beta,$$n=pαqβ, we give the minimal generating set. Moreover, we prove that there are exactly $$(p^{\alpha }-2)(q^{\beta }-2)$$(pα-2)(qβ-2) non-isomorphic commutative non-monoids of order $$p^\alpha q^\beta$$pαqβ. The identification of non-group semigroups for the integers $$p^{2\alpha }$$p2α and $$2p^\alpha$$2pα is achieved. The automorphism groups of these groups are specified as well. As a result of this study, an interesting difference between the abelian groups and the commutative semigroups of order $$p^2$$p2 is presented.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference9 articles.

1. Ahmadidelir, K., Doostie, H.: On the automorphisms of direct product of monogenic semigroups and monoids. Turk. J. Math. 35, 1–5 (2011)

2. Ahmadi, B., Campbell, C.M., Doostie, H.: Non-commutative finite monoids of a given order $$n\ge 4$$. An. St. Univ. Ovidious Constanta 22(2), 29–35 (2014)

3. Campbell, C.M., Mitchell, J.D., Ruskuc, N.: Semigroup and monoid presentations for finite monoids. Monatsh Math. 134, 287–293 (2002)

4. Campbell, C.M., Robertson, E.F., Ruskuc, N., Thomas, R.M.: Semigroup and group presentations. Bull. Lond. Math. Soc. 27, 46–50 (1995)

5. Clifford, N.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. I. Amer. Math. Soc. Surveys 7, Providence (1961)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3