Mining microbial and metabolic dark matter in extreme environments: a roadmap for harnessing the power of multi-omics data

Author:

Han Jia-Rui,Li Shuai,Li Wen-Jun,Dong LeiORCID

Abstract

AbstractExtreme environments such as hyperarid, hypersaline, hyperthermal environments, and the deep sea harbor diverse microbial communities, which are specially adapted to extreme conditions and are known as extremophiles. These extremophilic organisms have developed unique survival strategies, making them ideal models for studying microbial diversity, evolution, and adaptation to adversity. They also play critical roles in biogeochemical cycles. Additionally, extremophiles often produce novel bioactive compounds in response to corresponding challenging environments. Recent advances in technologies, including genomic sequencing and untargeted metabolomic analysis, have significantly enhanced our understanding of microbial diversity, ecology, evolution, and the genetic and physiological characteristics in extremophiles. The integration of advanced multi-omics technologies into culture-dependent research has notably improved the efficiency, providing valuable insights into the physiological functions and biosynthetic capacities of extremophiles. The vast untapped microbial resources in extreme environments present substantial opportunities for discovering novel natural products and advancing our knowledge of microbial ecology and evolution. This review highlights the current research status on extremophilic microbiomes, focusing on microbial diversity, ecological roles, isolation and cultivation strategies, and the exploration of their biosynthetic potential. Moreover, we emphasize the importance and potential of discovering more strain resources and metabolites, which would be boosted greatly by harnessing the power of multi-omics data.

Funder

National Natural Science Foundation of China

The Third Xinjiang Scientific Expedition Program

The Key-Area Research and Development Program of Guangdong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3