Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids

Author:

Wang Jingwen,Qiu Yanling,Zhang Lei,Zhou Xinyao,Hu Sihui,Liu Qianyi,Yin Sisi,Su Zehong,Liu Simiao,Liu Haiying,Wu Xueqing,Huang JunjiuORCID

Abstract

AbstractAutosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.1198 (C > T) and c.8311 (G > A), which could potentially be corrected by adenine base editor (ABE). The correction efficiencies of different ABE variants were tested using the HEK293T-PKD1 c.1198 (C > T) and HEK293T-PKD1 c.8311 (G > A) reporter cell lines. We then generated induced pluripotent stem cells (iPSCsmut/WT) from the peripheral blood mononuclear cells (PBMCs) of the heterozygous patient to develop a disease cell model. Since the iPSCsmut/WT did not exhibit a typical disease phenotype in stem cell status, differentiation into kidney organoids in vitro led to the expression of kidney organ-specific marker proteins. Stimulation of cAMP signaling with forskolin resulted in cystic expansion of renal epithelial tissue in iPSCmut/WT-derived kidney organoids, resembling the cystic phenotype observed in ADPKD patients. However, kidney organoids differentiated from ABE-corrected iPSCs did not display the cystic phenotype. Furthermore, we used a dual AAV split-ABEmax system as a therapeutic strategy and achieved an average editing efficiency of approximately 6.56% in kidney organoids. Overall, this study provides a framework for gene therapy targeting ADPKD through ABE single-base editing, offering promising prospects for future therapeutic interventions.

Funder

National Key R&D Program of China

Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3