Abstract
Abstract
Purpose
Cadaver dissections and X-ray based 3D angiography are considered gold standards for studying neurovascular anatomy. We sought to develop a model that utilize the combination of both these techniques to improve current tools for anatomical research, teaching and preoperative surgical planning, particularly addressing the venous system of the brain.
Materials and methods
Seven ethanol-fixed human cadaveric heads and one arm were injected with a latex-barium mixture into the internal jugular veins and the brachial artery. After the ethanol-based fixation, specimens were scanned by high-resolution cone-beam CT and images were post-processed on a 3D-workstation. Subsequent, microsurgical dissections were performed by an experienced neurosurgeon and venous anatomy was compared with relevant 3D venograms.
Results
Latex-barium mixtures resulted in a homogenous cast with filling of the cerebral venous structures down to 150 μm in diameter. The ethanol-based preparation of the cadaveric brains allowed for near-realistic microsurgical maneuverability during dissection. The model improves assessment of the venous system for anatomical education and hands-on surgical training.
Conclusion
To our knowledge we describe the first preparation method which combines near-realistic microsurgical dissection of human heads with high-resolution 3D imaging of the cerebral venous system in the same specimens.
Funder
Dagmar Marshalls Fond
Fonden til Lægevidenskabens Fremme
Rigshospitalet
Royal Library, Copenhagen University Library
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Pathology and Forensic Medicine,Surgery,Anatomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献