The effect of lifting load on the kinematic characteristics of lumbar spinous process in vivo

Author:

Chen Huanxiong,Zhong Zhenhao,Wen Wangqiang,Xu Haoxiang,Li Guojun,Su Tian,Zhang Zepei,Miao Jun

Abstract

Abstract Background There are limited data on the in vivo natural kinematics of the lumbar spinous process. This paper intends to explore the effect of lifting load on the in vivo movement mode of the lumbar spinous process and its biomechanical changes. Methods Ten asymptomatic subjects between the ages of 25 and 39 underwent CT scans of the lumbar spine in the supine position, and 3D models of L3-L5 were constructed. Using a Dual Fluoroscopy Imaging System (DFIS), instantaneous orthogonal fluoroscopic images of each subject's flexion–extension, left–right bending, and left–right rotational movements were taken under different loads (0 kg, 5 kg, 10 kg). The supine CT model was matched, using computer software, to the bony contours of the images from the two orthogonal views, so that the instantaneous 3D vertebral position at each location could be quantified. A Cartesian coordinate system was ultimately constructed at the tip of the spinous process to obtain the 6DOF kinematic data of the spinous process. Results In different postural movements of the trunk, there was no significant difference in the rotation angle and translation range of the lumbar spinous process under different loads (P > 0.05). In flexion to extension motion, spinous processes mainly rotate < 4° along the medial and lateral axes and translate < 4 mm along the craniocaudal direction. In the left–right bending motion, spinous processes mainly rotate < 5° along the anterior and posterior axes, and the translation is mainly coupling < 2 mm. In the rotational motion, the spinous process is mainly coupled motion, the rotation range is less than 3°, and the translation range is less than 2 mm. The distance between spinous processes measured in the supine position was 6.66 ± 2.29 mm at L3/4 and 5.08 ± 1.57 mm at L4/5. Conclusion The in vivo kinematics of the lumbar spinous process will not change significantly with increasing low load. In complex motion, the spinous process is dominated by coupling motion.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Pathology and Forensic Medicine,Surgery,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3