How to gauge investor behavior? A comparison of online investor sentiment measures

Author:

Ballinari DanieleORCID,Behrendt Simon

Abstract

AbstractGiven the increasing interest in and the growing number of publicly available methods to estimate investor sentiment from social media platforms, researchers and practitioners alike are facing one crucial question – which is best to gauge investor sentiment? We compare the performance of daily investor sentiment measures estimated from Twitter and StockTwits short messages by publicly available dictionary and machine learning based methods for a large sample of stocks. To determine their relevance for financial applications, these investor sentiment measures are compared by their effects on the cross-section of stocks (i) within a Fama and MacBeth (J Polit Econ 81:607–636, 1973) regression framework applied to a measure of retail investors’ order imbalances and (ii) by their ability to forecast abnormal returns in a model-free portfolio sorting exercise. Interestingly, we find that investor sentiment measures based on finance-specific dictionaries do not only have a greater impact on retail investors’ order imbalances than measures based on machine learning approaches, but also perform very well compared to the latter in our asset pricing application.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsche Forschungsgemeinschaft

Universität Basel

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Yield curve trading strategies exploiting sentiment data;The North American Journal of Economics and Finance;2024-09

2. Emotion contagion and stock market: the role of online investor network in China;Applied Economics;2024-07-17

3. Methods for aggregating investor sentiment from social media;Humanities and Social Sciences Communications;2024-07-17

4. Investor Sentiment Analysis of Financial Texts Based on GPT and RoBERTa;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. The volatility connectedness of US industries: The role of investor sentiment;Economics Letters;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3