Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors

Author:

Chalkiadakis IoannisORCID,Peters Gareth W.,Ames Matthew

Abstract

AbstractThis paper develops a novel hybrid Autoregressive Distributed Lag Mixed Data Sampling (ARDL-MIDAS) model that integrates both deep neural network multi-head attention Transformer mechanisms, and a number of covariates, including sophisticated stochastic text time-series features, into a mixed-frequency time-series regression model with long memory structure. In doing so, we demonstrate how the resulting class of ARDL-MIDAS-Transformer models allows one to maintain the interpretability of the time-series models whilst exploiting the deep neural network attention architectures. The latter may be used for higher-order interaction analysis, or, as in our use case, for design of Instrumental Variables to reduce bias in the estimation of the infinite lag ARDL-MIDAS model. Our approach produces an accurate, interpretable forecasting framework that allows one to forecast end-of-day sentiment intra-daily, with readily attainable time-series regressors. In this regard, we conduct a statistical time-series analysis on mixed data frequencies to discover and study the relationships between sentiment from our custom stochastic text time-series sentiment framework, alternative popular sentiment extraction frameworks (BERT and VADER), and technology factors, as well as to investigate the role that price discovery has on retail cryptocurrency investors’ sentiment (crypto sentiment). This is an interesting time-series modelling challenge as it involves working with time-series regression models in which the time-series response process, and the regression time-series covariates, are observed at different time scales. Specifically, a detailed real-data study is conducted where we explore the relationship between daily crypto market sentiment (of positive, negative and neutral polarity) and the intra-daily (hourly) price log-return dynamics of crypto markets. The sentiment indices constructed for a variety of “topics” and news sources are produced as a collection of time-series capturing the daily sentiment polarity signals for each “topic”, namely each particular market or crypto asset. Different sentiment methods are developed in a time-series context, and utilised in the proposed hybrid regression framework. Furthermore, technology factors are introduced to capture network effects, such as the hash rate which is an important aspect of the money supply relating to the mining of new crypto assets, and block hashing for transaction verification. Throughout our real data study, we provide guidance and insights on how to use our hybrid model to combine—in a transparent, non-black-box way—covariates obtained with different time resolutions, how to understand the arising dynamics between these covariates, potentially under the presence of long memory structure, and, finally, successfully leverage these in forecasting applications. The hybrid model developed demonstrated superior performance to alternatives in both in-sample and forecasting application on real data.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3