General Noise Models
Publisher
Hindustan Book Agency
Reference6 articles.
1. Anantharam, V., & Borkar, V. S. (2012). Stochastic approximation with long range dependent and heavy tailed noise. Queuing Systems, 71(1–2), 221–242. 2. Fernique, X. (1975). Regularité des trajectoires des fonctions aléatoires Gaussi- ennes’, in Ecole d’Eté de Probabilités de Saint-Flour IV, 1974 (P.-L. Hennequin, ed.), Lecture Notes in Math. No. 480, Springer-Verlag, Berlin, (pp. 1–96). 3. Grüne, L., Sontag, E. D., & Wirth, F. R. (1999). Asymptotic stability equals exponential stability, and ISS equals finite energy gain if you twist your eyes. Systems and Control Letters, 38(2), 127–134. 4. Joulin, A. (2007). On maximal inequalities for stable stochastic integrals. Potential Analysis, 26(1), 57–78. 5. Mikosch, T., Resnick, S., Rootzen, H., & Stegeman, A. (2002). Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Annals of Applied Probability, 12(1), 23–68.
|
|