Abstract
Abstract
Purpose of Review
Leprosy is one of the first pathologies described in the history of mankind. However, the ecology, transmission, and pathogenicity of the incriminated bacilli remain poorly understood. Despite effective treatment freely distributed worldwide since 1995, around 200,000 new cases continue to be detected yearly, mostly in the tropics. This review aims to discuss the unique characteristics of leprosy in Amazonian countries, which exhibit a very heterogeneous prevalence among human and animal reservoirs.
Recent Findings
Groundbreaking discoveries made in the last 15 years have challenged the dogmas about leprosy reservoirs, transmission, and treatment. The discovery of a new leprosy causative agent in 2008 and the scientific proof of zoonosis transmission of leprosy by nine-banded armadillos in the southern USA in 2011 challenged the prospects of leprosy eradication. In the Amazonian biome, nine-banded and other armadillo species are present but the lack of large-scale studies does not yet allow accurate assessment of the zoonotic risk. Brazil is the second country in the world reporting the highest number of new leprosy cases annually. The disease is also present, albeit with different rates, in all neighboring countries. Throughout the Amazonian biome, leprosy is mainly found in hyperendemic foci, conducive to the emergence and transmission of drug-resistant strains.
Summary
The deepening of current knowledge on leprosy reservoirs, transmission, and therapeutic issues, with the One Health approach and the help of molecular biology, will allow a better understanding and management of the public health issues and challenges related to leprosy in Amazonia.
Funder
European Funds for Regional Development
Agence Nationale pour la Recherche
New York Community Trust for Research
Société française de Microbiologie
Marie Sklodowska-Curie
European Molecular Biology Organization
Q.M. Gastmann-Wichers Foundation
effect::hope Canada
The Mission to End Leprosy
Leprosy Research Initiative Netherlands
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Immunology and Allergy
Reference113 articles.
1. Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev. 2006;19:338–81.
2. Han XY, Seo Y-H, Sizer KC, Schoberle T, May GS, Spencer JS, et al. A new Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol. 2008;130:856–64.
3. Sharma R, Singh P, McCoy RC, Lenz SM, Donovan K, Ochoa MT, et al. Isolation of Mycobacterium lepromatosis and development of molecular diagnostic assays to distinguish M. leprae and M. lepromatosis. Clin Infect Dis [Internet]. 2020; [cited 2020 Jan 10]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciz1121/5626481.
4. Singh P, Benjak A, Schuenemann VJ, Herbig A, Avanzi C, Busso P, et al. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc Natl Acad Sci USA. 2015;112:4459–64.
5. Balamayooran G, Pena M, Sharma R, Truman RW. The armadillo as an animal model and reservoir host for Mycobacterium leprae. Clin Dermatol. 2015;33:108–15.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献