Der Einfluss des Anziehungseffekts von Landmarken und der Verzerrung durch zentrale Tendenz auf räumliche Gedächtnisverzerrungen

Author:

Korte AnnikaORCID,Keil JulianORCID,Edler DennisORCID,Dickmann FrankORCID

Abstract

AbstractThe successful communication of spatial information with maps allows correct spatial memory retrieval. Space-referencing map elements like grid pattern lead to a higher spatial accuracy in memory performance. We studied the influence of the landmark attraction effect and the central tendency bias predicted by the categorical adjustment model. While landmark attraction effect would lead to an attraction toward the landmark for the recalled object location, central tendency bias would lead to a deviation toward the center of a given field. The effects of these distortions were investigated on two different kinds of grid pattern, continuous grid lines and grid crosses, superimposed on a map or on a blank background. Results showed higher object-location memory accuracy for grid crosses. As expected, a clear central tendency bias was observed for the continuous grid lines according to the expected central tendency bias. However, there was no clear landmark attraction effect or central tendency bias for the grid crosses. We suspect a partial cancellation of the two opposing effects in this case. Overall results, central tendency bias seems to be stronger than the landmark attraction effect. In our experimental design, the landmark attraction effect seems not to be able to eliminate the central tendency bias, but to mitigate its strength. We suggest a correcting influence of map elements on object-location memory as the spatial distortions caused by the central tendency bias of the complete grid are significantly reduced in the grid cross condition. Future studies have to show more exactly how different shifting effects of recalled object positions can be used cartographically to reduce distortions of the mental representation of space.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3