Abstract
AbstractMap information, especially volunteered geographic information (VGI) is prone to spatial inaccuracies. Due to their use as spatial reference points, spatially inaccurate landmark representations in maps might affect the ability to match maps to the represented 3D space and might compromise self-localization and orientation. Based on a map matching task in a virtual 3D environment and various degrees of spatial landmark inaccuracies in a simultaneously presented 2D map, we aimed to identify acceptable and critical values of spatial inaccuracies. Furthermore, potential effects of inaccurate semantic spatial categories were evaluated. The findings demonstrate how metric and semantic spatial inaccuracies of landmark representations affect matching of maps to the represented 3D space. Map inaccuracies corresponding to more than 10 m within 3D space and swapped landmark pictograms in a map were associated with the perception of a mismatch between maps and 3D spaces. Furthermore, the distance of landmarks to the perceiver was found to affect map matching. Spatial inaccuracies of landmark pictograms were less likely to be associated with a perceived mismatch between maps and 3D spaces when the landmarks were further away, presumably because small or moderate inaccuracies were more difficult to perceive. To reduce the identified effects of landmark inaccuracies in maps on map-matching performance, we propose to identify means to quantify the uncertainty concerning spatial landmark inaccuracies and to visually communicate this uncertainty to map users.
Funder
Deutsche Forschungsgemeinschaft
Ruhr-Universität Bochum
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Earth-Surface Processes
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献