1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Second Int. Symposium on Information Theory, pp. 267–281 (1973)
2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998),
http://www.ics.uci.edu/~mlearn/MLRepository.html
3. Breiman, L., Friedman, H., Olshen, J.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)
4. Bühlmann, P., Yu, B.: Boosting, model selection, lasso and nonnegative garrote. Technical Report 2005-127, Seminar for Statistics, ETH Zürich (2005)
5. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. In. Conf. on Machine Learning, pp. 148–156. Morgan Kaufmann, San Francisco (1996)