Investigating the spatial resolution of EMG and MMG based on a systemic multi-scale model

Author:

Klotz ThomasORCID,Gizzi Leonardo,Röhrle Oliver

Abstract

AbstractWhile electromyography (EMG) and magnetomyography (MMG) are both methods to measure the electrical activity of skeletal muscles, no systematic comparison between both signals exists. Within this work, we propose a novel in silico model for EMG and MMG and test the hypothesis that MMG surpasses EMG in terms of spatial selectivity, i.e. the ability to distinguish spatially shifted sources. The results show that MMG provides a slightly better spatial selectivity than EMG when recorded directly on the muscle surface. However, there is a remarkable difference in spatial selectivity for non-invasive surface measurements. The spatial selectivity of the MMG components aligned with the muscle fibres and normal to the body surface outperforms the spatial selectivity of surface EMG. Particularly, for the MMG’s normal-to-the-surface component the influence of subcutaneous fat is minimal. Further, for the first time, we analyse the contribution of different structural components, i.e. muscle fibres from different motor units and the extracellular space, to the measurable biomagnetic field. Notably, the simulations show that for the normal-to-the-surface MMG component, the contribution from volume currents in the extracellular space and in surrounding inactive tissues, is negligible. Further, our model predicts a surprisingly high contribution of the passive muscle fibres to the observable magnetic field.

Funder

German Research Foundation

Deutsche Forschungsgemeinschaft

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Modeling and Simulation,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3