Actomyosin contractility and buckling of microtubules in nucleation, growth and disassembling of focal adhesions

Author:

Palumbo S.,Benvenuti E.,Fraldi M.

Abstract

AbstractBuilding up and maintenance of cytoskeletal structure in living cells are force-dependent processes involving a dynamic chain of polymerization and depolymerization events, which are also at the basis of cells’ remodelling and locomotion. All these phenomena develop by establishing cell–matrix interfaces made of protein complexes, known as focal adhesions, which govern mechanosensing and mechanotransduction mechanisms mediated by stress transmission between cell interior and external environment. Within this framework, by starting from a work by Cao et al. (Biophys J 109:1807–1817, 2015), we here investigate the role played by actomyosin contractility of stress fibres in nucleation, growth and disassembling of focal adhesions. In particular, we propose a tensegrity model of an adherent cell incorporating nonlinear elasticity and unstable behaviours, which provides a new kinematical interpretation of cellular contractile forces and describes how stress fibres, microtubules and adhesion plaques interact mechanobiologically. The results confirm some experimental evidences and suggest how the actomyosin contraction level could be exploited by cells to actively control their adhesion, eventually triggering cytoskeleton reconfigurations and migration processes observed in both physiological conditions and diseases.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Modeling and Simulation,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3