The power of online panel paradata to predict unit nonresponse and voluntary attrition in a longitudinal design

Author:

Kocar SebastianORCID,Biddle NicholasORCID

Abstract

AbstractThe objective of this study is to identify factors affecting participation rates, i.e., nonresponse and voluntary attrition rates, and their predictive power in a probability-based online panel. Participation for this panel had already been investigated in the literature according to the socio-demographic and socio-psychological characteristics of respondents and different types of paradata, such as device type or questionnaire navigation, had also been explored. In this study, the predictive power of online panel participation paradata was instead evaluated, which was expected (at least in theory) to offer even more complex insight into respondents’ behavior over time. This kind of paradata would also enable the derivation of longitudinal variables measuring respondents’ panel activity, such as survey outcome rates and consecutive waves with a particular survey outcome prior to a wave (e.g., response, noncontact, refusal), and could also be used in models controlling for unobserved heterogeneity. Using the Life in Australia™ participation data for all recruited members for the first 30 waves, multiple linear, binary logistic and panel random-effect logit regression analyses were carried out to assess socio-demographic and online panel paradata predictors of nonresponse and attrition that were available and contributed to the accuracy of prediction and the best statistical modeling. The proposed approach with the derived paradata predictors and random-effect logistic regression proved to be reasonably accurate for predicting nonresponse—with just 15 waves of online panel paradata (even without sociodemographics) and logit random-effect modeling almost four out of five nonrespondents could be correctly identified in the subsequent wave.

Funder

Department of Education, Skills and Employment, Australian Government

University of Tasmania

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Longitudinal Nonresponse Prediction with Time Series Machine Learning;Journal of Survey Statistics and Methodology;2024-08-22

2. Social-psychological Aspects of Probability-based Online Panel Participation;International Journal of Public Opinion Research;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3