Agree to agree: correcting acquiescence bias in the case of fully unbalanced scales with application to UK measurements of political beliefs

Author:

Swatton PhilORCID

Abstract

AbstractA methodologically important area in political science is measuring the ideology of voters. This task can be difficult, and researchers often rely on ‘off the shelf’ datasets. Many of these datasets contain unbalanced Likert scales, which risk acquiescence bias. This paper proposes a strategy for dealing with this issue. I first demonstrate using two comparable datasets from the UK how unbalanced scales produce distorted distributions and can affect regression results. Then, building on past research that utilises factor analysis to eliminate the influence of acquiescence bias, I demonstrate how researchers can utilise a person intercept confirmatory factor analysis model to obtain factor scores corrected for acquiescence in the case of fully unbalanced scales. I conclude with practical recommendations for researchers and survey designers moving forward.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3