Using web archives for an explorative study of the web presence of German parties during the European election 2019

Author:

Ertel Florence,Donig Simon,Eckl Markus,Gassner Sebastian,Göler Daniel,Rehbein Malte

Abstract

AbstractIn the digital age, political science is faced with a shift of election campaigns and political discourse to digital or virtual arenas. Because the internet is a highly volatile medium and online content can become inaccessible after the campaign season, new challenges for research arise as well as the need for the preservation of online content. Moreover, the sheer volume of data researchers have to deal with has reached levels where traditional methods are being highly challenged. This paper puts forth a web harvesting workflow with a strong focus on granular extraction of unstructured information (publication dates) for automated analysis. As our approach is methodological, we would like to point out the benefits that researches in political science may draw from adapting our methodology. We demonstrate this by analysing an event-based web crawl of German parties participating in the election campaign for the European Parliamentary Election in 2019. We employ distant reading methods to generate topic models, which are subsequently evaluated by hermeneutic analysis of a subset of the data.

Funder

deutsche forschungsgemeinschaft

Universität Passau

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Statistics and Probability

Reference81 articles.

1. Alvarez, R.M.: Computational Social Science: Discovery and Predictions. Analytical Methods for Social Research. Cambridge University Press, New York (2016)

2. Anders, L.H., Träger, H.: Die Europawahl 2019 – wieder eine second-order election? Eine Analyse der Wahlergebnisse in den 28 EU-Staaten. In: Kaeding, M., Müller, M., Schmälter, J. (eds.) Die Europawahl 2019. Ringen um die Zukunft Europas, pp. 315–326. Springer, Wiesbaden (2020)

3. Archives Unleashed Project: Archives Unleashed Toolkit (Version 0.50.0). Apache License, Version 2.0 (2019)

4. Barberà, P., Casas, A., Nagler, N., Egan, P.J., Bonneau, R., Jost, J.T., Tucker, J.A.: Who leads? Who follows? Measuring issue attention and agenda setting by legislators and the mass public using social media data. Am. Polit. Sci. Rev. 113(4), 883–901 (2019)

5. Bentivegna, S., Marchetti, R.: Campaigning on Twitter: The use of social media in the 2014 European elections in Italy. In: Davis, R., Holtz Bacha, C., Just, M.R. (eds.) Twitter and Elections Around the World. Campaigning in 140 Characters or Less, pp. 126–140. Routledge, New York (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3