Abstract
AbstractThis study assesses the extent to which the two main Configurational Comparative Methods (CCMs), i.e. Qualitative Comparative Analysis (QCA) and Coincidence Analysis (CNA), produce different models. It further explains how this non-identity is due to the different algorithms upon which both methods are based, namely QCA’s Quine–McCluskey algorithm and the CNA algorithm. I offer an overview of the fundamental differences between QCA and CNA and demonstrate both underlying algorithms on three data sets of ascending proximity to real-world data. Subsequent simulation studies in scenarios of varying sample sizes and degrees of noise in the data show high overall ratios of non-identity between the QCA parsimonious solution and the CNA atomic solution for varying analytical choices, i.e. different consistency and coverage threshold values and ways to derive QCA’s parsimonious solution. Clarity on the contrasts between the two methods is supposed to enable scholars to make more informed decisions on their methodological approaches, enhance their understanding of what is happening behind the results generated by the software packages, and better navigate the interpretation of results. Clarity on the non-identity between the underlying algorithms and their consequences for the results is supposed to provide a basis for a methodological discussion about which method and which variants thereof are more successful in deriving which search target.
Funder
Toppforsk program of the University of Bergen, co-financed by the Trond Mohn Foundation
University of Bergen
Publisher
Springer Science and Business Media LLC
Subject
General Social Sciences,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献