Classification of Pathologies on Medical Images Using the Algorithm of Random Forest of Optimal-Complexity Trees
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s10559-023-00569-z.pdf
Reference33 articles.
1. I. H. Sarker, “Machine learning: Algorithms, real-world applications and research directions,” SN Comput. Sci., Vol. 2, Iss. 3, 160 (2021). https://doi.org/10.1007/s42979-021-00592-x.
2. A. Mayr, H. Binder, O. Gefeller, and M. Schmid, “The evolution of boosting algorithms. From machine learning to statistical modelling,” Methods Inf. Med., Vol. 53, No. 06, 419–427 (2014). https://doi.org/10.3414/ME13-01-0122.
3. A. H. Osman and H. M. Aljahdali, “An effective of ensemble boosting learning method for breast cancer virtual screening using neural network model,” IEEE Access, Vol. 8, 39165–39174 (2020). https://doi.org/10.1109/ACCESS.2020.2976149.
4. T.-K. Ho, “Random decision forests,” in: Proc. 3rd Intern. Conf. on Document Analysis and Recognition (Montreal, QC, Canada, 14–16 August 1995), Vol. 1, IEEE (1995), pp. 278–282. https://doi.org/10.1109/ICDAR.1995.598994.
5. Ie. Nastenko, V. Maksymenko, S. Potashev, V. Pavlov, V. Babenko, S. Rysin, O. Matviichuk, and V. Lazoryshinets, “Random forest algorithm construction for the diagnosis of coronary heart disease based on echocardiography video data streams,” Innov. Biosyst. Bioeng., Vol. 5, No. 1, 61–69 (2021). https://doi.org/10.20535/ibb.2021.5.1.225794.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. F-Net: Follicles Net an efficient tool for the diagnosis of polycystic ovarian syndrome using deep learning techniques;PLOS ONE;2024-08-15
2. Efficient artificial intelligence approaches for medical image processing in healthcare: comprehensive review, taxonomy, and analysis;Artificial Intelligence Review;2024-07-29
3. A hybrid approach of simultaneous segmentation and classification for medical image analysis;Multimedia Tools and Applications;2024-05-16
4. Multiclass Classifier Based on Binary Logistic Regressions Obtained According to the Principles of GMDH;Control Systems and Computers;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3