1. F. Barahona, M. Groschgel, M. Junger, and G. Reinelt, An application of combinatorial optimization to statistical physics and circuit layout design, Operation Research, Vol. 36, Issue 34, 493–513 (1988).
2. S. Poljak and Z. Tuza, The max-cut problem: A survey, in: W. Cook, L. Lovasz, and P. Seymour (eds.), Special Year on Combinatorial Optimization, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society (1995).
3. A. Billionnet, Solving a cut problem in bipartite graphs by linear programming: Application to a forest management problem, Applied Mathematical Modeling, Vol. 34, 1042–1050 (2010).
4. M. X. Goemans and D. P. Williamson, 0.878 — approximation algorithms for NAX CUT and MAX 2SAT, in: Proc. 26th Annual ASM Symposium on the Theory of Computing (1994), pp. 422–431.
5. M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. of ACM, 42(6), 1115–1145 (1995).