Publisher
Springer Science and Business Media LLC
Reference11 articles.
1. D. Levhari and L. J. Mirman, “The great fish war: An example using a dynamic Cournot–Nash solution,” The Bell J. of Economics, Vol. 11, No. 1, 322–334 (1980). https://doi.org/10.2307/3003416.
2. R. K. Sundaram, “Perfect equilibrium in non-randomized strategies in a class of symmetric dynamic games,” J. Econ. Theory, Vol. 47, Iss. 1, 153–177 (1989). https://doi.org/10.1016/0022-0531(89)90107-5.
3. M. Majumdar and R. Sundaram, “Symmetric stochastic games of resource extraction: The existence of non-randomized stationary equilibrium,” in: T. E. S. Raghavan, T. S. Ferguson, T. Parthasarathy, and O. J. Vrieze (eds.), Stochastic Games and Related Topics, Theory and Decision Library (Game Theory, Mathematical Programming and Operations Research), Vol. 7, Springer, Dordrecht (1991), pp. 175–190.
4. P. K. Dutta and R. Sundaram, “Markovian equilibrium in a class of stochastic games: Existence theorems for discounted and undiscounted models,” Econ. Theory, Vol. 2, Iss. 2, 197–214 (1992). https://doi.org/10.1007/BF01211440.
5. A. Jaśkiewicz and A. S. Nowak, “On symmetric stochastic games of resource extraction with weakly continuous transitions,” TOP, Vol. 26, Iss. 2, 239–256 (2018). https://doi.org/10.1007/s11750-017-0465-0.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献