Automatic transcription system for parliamentary debates in the context of assembly of the republic of Portugal

Author:

Nascimento PedroORCID,Ferreira João C.ORCID,Batista FernandoORCID

Abstract

AbstractThe transcription of parliamentary proceedings is essential for democratic governance. Traditional methods are manual and time-consuming. This work introduces an Automatic Transcription System for the Assembly of the Republic of Portugal (STAAR) that uses an automatic speech recognition model and speaker diarization technologies. STAAR was developed after analyzing existing technologies and the Assembly’s specific needs, leading to an effective solution that integrates with current processes. STAAR stands out for its efficiency in transcribing debates and adapting to parliamentary language nuances. It significantly exceeded expectations by presenting a low transcription error rate, ranging from 1.7 to 11.3%, depending on the context and speech style, reducing the time required to produce the official parliamentary debates journal, and improving overall transcription efficiency. Additionally, STAAR enabled the transcription of previously undocumented parliamentary committee meetings, enhancing the documentation of parliamentary activities. This achievement marks a significant step in modernizing parliamentary processes, increasing transparency and accessibility of political information, and positions the Portuguese Parliament at the forefront of technological innovation in parliamentary debates transcription.

Funder

ISCTE – Instituto Universitário

Publisher

Springer Science and Business Media LLC

Reference38 articles.

1. 14:00-17:00 ISO/IEC 15504-2. (2003). Retrieved 23 Oct 2023, from https://www.iso.org/standard/37458.html

2. Alumaë, T., Tilk, O., & Ullah, A. (2018). Advanced rich transcription system for Estonian speech. Frontiers in Artificial Intelligence and Applications, 307, 8.

3. Baevski, A., Zhou, H., Mohamed, A., Auli, M. (2020). Wav2vec 2.0: A framework for self-supervised learning of speech representations. In 34th Conference on neural information processing systems (NeurIPS 2020), (Vol. 2020), Vancouver, Canada.

4. Bain, M., Huh, J., Han, T., & Zisserman, A. (2023). WhisperX: Time-accurate speech transcription of long-form audio. https://doi.org/10.48550/arXiv.2303.00747

5. Bredin, H., Yin, R., Coria, J. M., Gelly, G., Korshunov, P., Lavechin, M., Fustes, D., Titeux, H., Bouaziz, W., & Gill, M.-P. (2019). Pyannote.Audio: Neural building blocks for speaker diarization.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3