1. Ahmad, J., Fiaz, M., Kwon, S. I., Sodanil, M., Vo, B., & Baik, S. W. (2016). Gender identification using MFCC for telephone applications-a comparative study. arXiv Prepr. arXiv1601.01577., 2016.
2. Alnuaim, A. A., Zakariah, M., Shashidhar, C., Hatamleh, W. A., Tarazi, H., Shukla, P. K., & Ratna, R. (2022). Speaker gender recognition based on deep neural networks and ResNet50, Wireless Communications and Mobile Computing. Hindawi.
3. Becker, S., Ackermann, M., Lapuschkin, S., Müller, K. R., & Samek, W. (2018). Interpreting and explaining deep neural networks for classification of audio signals, arXiv Prepr. ArXiv1807.03418, 2018.
4. Choi, J., Kim, S., Park, W., Yong, S., & Nam, S. (2020). Children’s song dataset for singing voice research, 21th International Society for Music Information Retrieval Conference (ISMIR).
5. Chung*, A. Z. J. S., Nagrani*, A. (2018). VoxCeleb2: Deep Speaker Recognition, Interspeech.