Publisher
Springer Science and Business Media LLC
Subject
Computer Vision and Pattern Recognition,Linguistics and Language,Human-Computer Interaction,Language and Linguistics,Software
Reference24 articles.
1. Arik, S. O., Kliegl, M., Child, R., Hestness, J., Gibiansky, A., Fougner, C., Prenger, R., & Coates, A. (2017). Convolutional recurrent neural networks for small-footprint keyword spotting. Preprint at https://arXiv.org//1703.05390
2. Berg, A., O’Connor, M., & Cruz, M. T. (2021). Keyword transformer: A self-attention model for keyword spotting. Preprint at https://arXiv.org/2104.00769
3. Bluche, T., Primet, M., & Gisselbrecht, T. (2020). Small-footprint open-vocabulary keyword spotting with quantized LSTM networks. Preprint at https://arXiv.org/2002.10851
4. Chen, G., Parada, C., & Sainath, T. N. (2015). Query-by-example keyword spotting using long short-term memory networks. In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5236–5240). IEEE.
5. Chen, X., Yin, S., Song, D., Ouyang, P., Liu, L., & Wei, S. (2019). Small-footprint keyword spotting with graph convolutional network. In 2019 IEEE automatic speech recognition and understanding workshop (ASRU) (pp. 539–546). IEEE.