Locally checkable problems in rooted trees

Author:

Balliu Alkida,Brandt Sebastian,Chang Yi-Jun,Olivetti Dennis,Studený Jan,Suomela JukkaORCID,Tereshchenko Aleksandr

Abstract

AbstractConsider any locally checkable labeling problem $$\Pi $$ Π in rooted regular trees: there is a finite set of labels $$\Sigma $$ Σ , and for each label $$x \in \Sigma $$ x Σ we specify what are permitted label combinations of the children for an internal node of label x (the leaf nodes are unconstrained). This formalism is expressive enough to capture many classic problems studied in distributed computing, including vertex coloring, edge coloring, and maximal independent set. We show that the distributed computational complexity of any such problem $$\Pi $$ Π falls in one of the following classes: it is O(1), $$\Theta (\log ^* n)$$ Θ ( log n ) , $$\Theta (\log n)$$ Θ ( log n ) , or $$n^{\Theta (1)}$$ n Θ ( 1 ) rounds in trees with n nodes (and all of these classes are nonempty). We show that the complexity of any given problem is the same in all four standard models of distributed graph algorithms: deterministic $$\mathsf {LOCAL}$$ LOCAL , randomized $$\mathsf {LOCAL}$$ LOCAL , deterministic $$\mathsf {CONGEST}$$ CONGEST , and randomized $$\mathsf {CONGEST}$$ CONGEST model. In particular, we show that randomness does not help in this setting, and the complexity class $$\Theta (\log \log n)$$ Θ ( log log n ) does not exist (while it does exist in the broader setting of general trees). We also show how to systematically determine the complexity class of any such problem $$\Pi $$ Π , i.e., whether $$\Pi $$ Π takes O(1), $$\Theta (\log ^* n)$$ Θ ( log n ) , $$\Theta (\log n)$$ Θ ( log n ) , or $$n^{\Theta (1)}$$ n Θ ( 1 ) rounds. While the algorithm may take exponential time in the size of the description of $$\Pi $$ Π , it is nevertheless practical: we provide a freely available implementation of the classifier algorithm, and it is fast enough to classify many problems of interest.

Funder

Aalto University

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3