Distributed computation and reconfiguration in actively dynamic networks

Author:

Michail OthonORCID,Skretas GeorgeORCID,Spirakis Paul G.ORCID

Abstract

AbstractWe study here systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration to carry out a given task. Also, the distributed task itself may now require a global reconfiguration from a given initial network $$G_s$$ G s to a target network $$G_f$$ G f from a desirable family of networks. To formally capture costs associated with creating and maintaining connections, we define three edge-complexity measures: the total edge activations, the maximum activated edges per round, and the maximum activated degree of a node. We give (poly)log(n) time algorithms for the task of transforming any $$G_s$$ G s into a $$G_f$$ G f of diameter (poly)log(n), while minimizing the edge-complexity. Our main lower bound shows that $$\varOmega (n)$$ Ω ( n ) total edge activations and $$\varOmega (n/\log n)$$ Ω ( n / log n ) activations per round must be paid by any algorithm (even centralized) that achieves an optimum of $$\varTheta (\log n)$$ Θ ( log n ) rounds. We give three distributed algorithms for our general task. The first runs in $$O(\log n)$$ O ( log n ) time, with at most 2n active edges per round, a total of $$O(n\log n)$$ O ( n log n ) edge activations, a maximum degree $$n-1$$ n - 1 , and a target network of diameter 2. The second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations. It gives a target network of diameter $$O(\log n)$$ O ( log n ) and uses O(n) active edges per round. Our third algorithm shows that if we slightly increase the maximum degree to polylog(n) then we can achieve $$o(\log ^2 n)$$ o ( log 2 n ) running time.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of an Electronic Online Learning Platform Based on WebGIS Algorithm;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3