Low-congestion shortcut and graph parameters

Author:

Kitamura NaokiORCID,Kitagawa Hirotaka,Otachi Yota,Izumi Taisuke

Abstract

AbstractDistributed graph algorithms in the standard CONGEST model often exhibit the time-complexity lower bound of $${\tilde{\Omega }}(\sqrt{n} + D)$$ Ω ~ ( n + D ) rounds for several global problems, where n denotes the number of nodes and D the diameter of the input graph. Because such a lower bound is derived from special “hard-core” instances, it does not necessarily apply to specific popular graph classes such as planar graphs. The concept of low-congestion shortcuts was initiated by Ghaffari and Haeupler [SODA2016] for addressing the design of CONGEST algorithms running fast in restricted network topologies. In particular, given a graph class $${\mathcal {C}}$$ C , an f-round algorithm for constructing shortcuts of quality q for any instance in $${\mathcal {C}}$$ C results in $${\tilde{O}}(q + f)$$ O ~ ( q + f ) -round algorithms for solving several fundamental graph problems such as minimum spanning tree and minimum cut, for $${\mathcal {C}}$$ C . The main interest on this line is to identify the graph classes allowing the shortcuts that are efficient in the sense of breaking $${\tilde{O}}(\sqrt{n}+D)$$ O ~ ( n + D ) -round general lower bounds. In this study, we consider the relationship between the quality of low-congestion shortcuts and the following four major graph parameters: doubling dimension, chordality, diameter, and clique-width. The key ingredient of the upper-bound side is a novel shortcut construction technique known as short-hop extension, which might be of independent interest.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3