Synthesizing optimal bias in randomized self-stabilization

Author:

Volk MatthiasORCID,Bonakdarpour Borzoo,Katoen Joost-Pieter,Aflaki Saba

Abstract

AbstractRandomization is a key concept in distributed computing to tackle impossibility results. This also holds for self-stabilization in anonymous networks where coin flips are often used to break symmetry. Although the use of randomization in self-stabilizing algorithms is rather common, it is unclear what the optimal coin bias is so as to minimize the expected convergence time. This paper proposes a technique to automatically synthesize this optimal coin bias. Our algorithm is based on a parameter synthesis approach from the field of probabilistic model checking. It over- and under-approximates a given parameter region and iteratively refines the regions with minimal convergence time up to the desired accuracy. We describe the technique in detail and present a simple parallelization that gives an almost linear speed-up. We show the applicability of our technique to determine the optimal bias for the well-known Herman’s self-stabilizing token ring algorithm. Our synthesis obtains that for small rings, a fair coin is optimal, whereas for larger rings a biased coin is optimal where the bias grows with the ring size. We also analyze a variant of Herman’s algorithm that coincides with the original algorithm but deviates for biased coins. Finally, we show how using speed reducers in Herman’s protocol improve the expected convergence time.

Funder

National Science Foundation

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter Synthesis in Markov Models: A Gentle Survey;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3