Author:
Assem Ibrahim,Bustamante Juan Carlos,Trepode Sonia,Valdivieso Yadira
Abstract
AbstractThe objective of this paper is to give a concrete interpretation of the dimension of the first Hochschild cohomology space of a cyclically oriented or tame cluster tilted algebra in terms of a numerical invariant arising from the potential.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Amiot, C., Labardini-Fragoso, D., Plamondon, P. -G.: Derived invariants for surface cut algebras ii: the punctured case. arXiv:1606.07364 (2016)
2. Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P. -G.: Gentle algebras arising from surface triangulations. Algebra Number Theory 4 (2), 201–229 (2010)
3. Assem, I., Brüstle, T., Schiffler, R.: Cluster-tilted algebras as trivial extensions. Bull. Lond. Math Soc. 40(1), 151–162 (2008)
4. Assem, I., Bustamante, J. C., Dionne, J., Le Meur, P., Smith, D.: Representation theory of partial relation extensions. Coll. Math. 155(2), 157–186 (2019)
5. Assem, I., Bustamante, J. C., Igusa, K., Schiffler, R.: The first Hochschild cohomology group of a cluster tilted algebra revisited. Internat. J. Algebra Comput. 23(4), 729–744 (2013)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Organising the module category;São Paulo Journal of Mathematical Sciences;2021-05-17