1. Butorac, M., Jing, N., Kožić, S.: h-Adic quantum vertex algebras associated with rational R-matrix in types B, C and D, Lett. Math. Phys. 109, 2439–2471 (2019) arXiv:1904.03771 [math.QA]
2. Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras V, Selecta Math. (N.S.) 6, 105–130 (2000) arXiv:9808121 [math.QA]
3. Frenkel, E.: Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, 103. Cambridge University Press, Cambridge (2007)
4. Iohara, K.: Bosonic representations of Yangian double $$DY_{\hbar }(\mathfrak{g})$$ with $$\mathfrak{g}=\mathfrak{g}\mathfrak{l}_N,\mathfrak{s}\mathfrak{l}_{N}$$, J. Phys. A 29, 4593–4621 (1996). arXiv:q-alg/9603033
5. Jing, N., Kožić, S., Molev, A., Yang, F.: Center of the quantum affine vertex algebra in type $$A$$, J. Algebra 496, 138–186 (2018). arXiv:1603.00237 [math.QA]