Abstract
AbstractLet k be an algebraically closed field of characteristic p > 0 and let G be a symplectic or general linear group over k. We consider induced modules for G under the assumption that p is bigger than the greatest hook length in the partitions involved. We give explicit constructions of left resolutions of induced modules by tilting modules. Furthermore, we give injective resolutions for induced modules in certain truncated categories. We show that the multiplicities of the indecomposable tilting and injective modules in these resolutions are the coefficients of certain Kazhdan-Lusztig polynomials. We also show that our truncated categories have a Kazhdan-Lusztig theory in the sense of Cline, Parshall and Scott. This builds further on work of Cox-De Visscher and Brundan-Stroppel.
Publisher
Springer Science and Business Media LLC