Author:
Kouno Takafumi,Naito Satoshi,Orr Daniel
Abstract
AbstractWe provide identities of inverse Chevalley type for the graded characters of level-zero Demazure submodules of extremal weight modules over a quantum affine algebra of type C. These identities express the product $$e^{\mu } \text {gch} ~V_{x}^{-}(\lambda )$$
e
μ
gch
V
x
-
(
λ
)
of the (one-dimensional) character $$e^{\mu }$$
e
μ
, where $$\mu $$
μ
is a (not necessarily dominant) minuscule weight, with the graded character gch$$V_{x}^{-}(\lambda )$$
V
x
-
(
λ
)
of the level-zero Demazure submodule $$V_{x}^{-}(\lambda )$$
V
x
-
(
λ
)
over the quantum affine algebra $$U_{\textsf{q}}(\mathfrak {g}_{\textrm{af}})$$
U
q
(
g
af
)
as an explicit finite linear combination of the graded characters of level-zero Demazure submodules. These identities immediately imply the corresponding inverse Chevalley formulas for the torus-equivariant K-group of the semi-infinite flag manifold $$\textbf{Q}_{G}$$
Q
G
associated to a connected, simply-connected and simple algebraic group G of type C. Also, we derive cancellation-free identities from the identities above of inverse Chevalley type in the case that $$\mu $$
μ
is a standard basis element $${\varepsilon }_{k}$$
ε
k
in the weight lattice P of G.
Funder
Japan Society for the Promotion of Science
Simons Foundation
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Brenti, F., Fomin, S., Postnikov, A.: Mixed Bruhat operators and Yang-Baxter equations for Weyl groups. Int. Math. Res. Not. 1999(8), 419–441 (1999)
2. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
3. Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73(2), 383–413 (1994)
4. Kato, S.: Loop structure on equivariant $$K$$-theory of semi-infinite flag manifolds, arXiv:1805.01718
5. Kouno, T., Lenart, C., Naito, S.: New structure on the quantum alcove model with applications to representation theory and Schubert calculus, to appear in J. Comb. Algebra, arXiv:2105.02546