Abstract
AbstractLet $$(T(n),\Omega )$$
(
T
(
n
)
,
Ω
)
be the covering of the generalized Kronecker quiver K(n), where $$\Omega $$
Ω
is a bipartite orientation. Then there exists a reflection functor $$\sigma $$
σ
on the category $${{\,\textrm{mod}\,}}(T(n),\Omega )$$
mod
(
T
(
n
)
,
Ω
)
. Suppose that $$0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0$$
0
→
X
→
Y
→
Z
→
0
is an AR-sequence in the regular component $$\mathcal {D}$$
D
of $${{\,\textrm{mod}\,}}(T(n),\Omega )$$
mod
(
T
(
n
)
,
Ω
)
, and b(Z) is the number of flow modules in the $$\sigma $$
σ
-orbit of Z. Then the middle term Y is a sink (source or flow) module if and only if $$\sigma Z$$
σ
Z
is a sink (source or flow) module. Moreover, their radii and centers satisfy $$r(Y)=r(\sigma Z)+1$$
r
(
Y
)
=
r
(
σ
Z
)
+
1
and $$C(Y)=C(\sigma Z)$$
C
(
Y
)
=
C
(
σ
Z
)
.
Funder
Christian-Albrechts-Universität zu Kiel
Publisher
Springer Science and Business Media LLC
Reference7 articles.
1. Assem, I., Simson, D., Skowroński, A.: Elements of the representation Theory of Associative Algebras, I: Techniques of Representation Theory. London Mathematical Society Student Texts, Cambridge University Press, Cambridge (2006)
2. Kerner, O.: Representations of Wild Quivers Representation theory of algebras and related topics. CMS Conf. Proc. 19, 65–107 (1996)
3. Bongartz, K., Gabriel, P.: Covering spaces in representation theory. Inventiones Mathematicae 65, 331–378 (1981/82)
4. Ringel, C.M.: Covering theory (2016). https://www.math.uni-bielefeld.de/~ringel/lectures/izmir/izmir-6.pdf
5. Ringel, C.M.: The shift orbits of the graded Kronecker modules. Mathematische Zeitschrift 290(3), 1199–1222 (2018)