Abstract
AbstractLet $\mathfrak {g}$
g
be a complex simple Lie algebra. We consider subalgebras $\mathfrak {m}$
m
which are Levi factors of parabolic subalgebras of $\mathfrak {g}$
g
, or equivalently $\mathfrak {m}$
m
is the centralizer of its center. We introduced the notion of admissible systems on finite order $\mathfrak {g}$
g
-automorphisms 𝜃, and show that 𝜃 has admissible systems if and only if its fixed point set is a Levi factor. We then use the extended Dynkin diagrams to characterize such automorphisms, and look for automorphisms of minimal order.
Funder
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Bourbaki, N: Elements de mathematique. Groupes et algebres de Lie, Ch. IV-VI. Herman, Paris (1968)
2. Carmeli, C., Fioresi, R., Varadarajan, V.S.: Highest weight Harish-Chandra supermodules and their geometric realizations. Transf. Groups 25, 33–80 (2020)
3. Dimitrov, I., Fioresi, R.: On Kostant root systems for Lie superalgebras. J. Alg. 570, 678–701 (2021)
4. Dimitrov, I., Futorny, V., Grantcharov, D.: Parabolic sets of roots. Contemp. Math. 499, 61–74 (2009)
5. Ferrara, S., Marrani, A., Yeranyan, A.: Freudenthal duality and generalized special geometry. Phys. Lett. B 701, 640–645 (2011)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献